Track-Based alignment

for Belle/Belle II

Andreas Moll

On behalf of the work of Martin Ritter

3rd Open Meeting of the Belle II Collaboration July 7-9, 2009, KEK, Japan

- Short introduction to track based alignment
- Track based alignment during runs
- Alignment strategy
- The Millepede 2 algorithm
- New BASF module for alignment

Residual: distance of hit with intersection point of track in a module.

Ideal: Exact positions of modules are known.

Residuals follow a gaussian distribution

In reality:

Known positions of modules are $\pm 100 \ \mu m$

Residual is shifted because hit position is shifted.

Solution: calculate correction parameters

for each module

Translation 3 parameters

Rotation 3 parameters

. . .

by using residuals of a large number of tracks.

Minimize:
$$\chi^2 = \sum_{i \in tracks} \vec{r}_i^T V_i^{-1} \vec{r}_i$$

$$\Rightarrow \frac{d\chi^2(\vec{p})}{d\vec{p}} = 0 \tag{1}$$

$$\chi^{2}(\vec{p}) = \chi^{2}(\vec{p}_{0}) + \frac{d\chi^{2}(\vec{p})}{d\vec{p}} \bigg|_{\vec{p} = \vec{p}_{0}} (\vec{p} - \vec{p}_{0})$$
 (2)

(1) in (2) with $\Delta \vec{p} = (\vec{p} - \vec{p}_0)$ yields:

the **residual** $\vec{r}_i(\vec{p}, \vec{q}_i)$ is a function of alignment parameters \vec{p} and of the track parameters \vec{q}_i

For the sake of notation the dependence of χ^2 on \vec{q}_i will not be written here.

Rewrite as a Taylor expansion.

Linear least square minimization: expand up to first order

 \vec{p}_0 is the vector of initial alignment parameters

$$\underbrace{(J^T V_i^{-1} J)}_{C} \Delta \vec{p} = \underbrace{J^T V_i^{-1}}_{b} \vec{r}_i(\vec{p}_0)$$

$$C \Delta \vec{p} = \vec{b}$$

J: Jacobi Matrix

Task: Invert the Matrix C to find alignment corrections $\Delta \vec{p}$

Global alignment

Use a single χ^2 for all modules and all degrees of freedom.

a huge matrix equation has to be solved

Local alignment

Use a χ^2 for each module

small matrices (typically 6x6)

solve iteratively

correlations between different modules are not taken into account.

Internal alignment

alignment of individual modules

External alignment

alignment of subdetector structures (regarded as rigid bodies)

SVD 2

- 4 layer DSSD
- 246 modules in total

Strategy

- Two times a year: Alignment using cosmics with the magnetic field being turned off.
- Lorentz correction using cosmics with the magnetic field being turned on.
- One set of alignment parameters per experiment.
- Current alignment precision: 10 μm

- Internal local alignment for each module
- External local alignment for the whole SVD2 (rigid body) w.r.t. the CDC

Idea: implement a new alignment process?

Improve physics analysis by a better alignment.

Still some Systematics in current Alignment [Belle Note 715]

A high precision PXD detector will be part of the upgraded Belle detector:

2 layer DEPFET (34 modules)

Requirements:

- Need high precision alignment < 10 μm
- PXD is not mechanically connected to the SVD

Need alignment data on a week-to-week basis

Time dependent alignment

Implementation of an track based alignment system in BASF for the Belle SVD in preparation for the upgraded detector.

Use **muon-pairs** and **cosmics** from actual **run data**.

Implement a global alignment strategy for BELLE / BELLE II using the Millepede 2 [1] approach:

- Used at H1, CDF and CMS
- Non-iterative linear least squares algorithm
- Fits both, track and alignment parameters simultaneously
- Optimized for large matrices

EXP	ALIGN. PARAM	Matrix to invert
BELLE	1476	1476x1476
BELLE II	2974	2974x2974
CMS	47655	47655x47655

[1] http://www.desy.de/~blobel/mptalks.html

$$\underbrace{(J^T V_i^{-1} J)}_{C} \Delta \vec{p} = \underbrace{J^T V_i^{-1}}_{b} \vec{r}_i(\vec{p}_0)$$

$$C \ \Delta \vec{p} = \vec{b} \quad \Longrightarrow \quad \Delta \vec{p} = C^{-1} \vec{b}$$

$$\Delta \vec{p} = C^{-1} \vec{b}$$

Millepede approach:

Correlations of alignment parameter

Size of matrix C: $Num_{tracks} * Num_{track \ parameter} + Num_{modules} * Num_{alignment \ parameter}$

$$C \ \Delta \vec{p} = \vec{b}$$

Partition matrix and vectors

$$\begin{vmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{vmatrix} \begin{vmatrix} \Delta \vec{p}_1 \\ \Delta \vec{p}_2 \end{vmatrix} = \begin{vmatrix} \vec{b}_1 \\ \vec{b}_2 \end{vmatrix}$$

Schur complement

$$S = C_{11} - C_{12} C_{22}^{-1} C_{21}$$

$$\begin{array}{c|c} \Delta \vec{p}_1 \\ \hline \Delta \vec{p}_2 \end{array} \qquad \qquad \text{alignment parameter corrections}$$

$$\qquad \qquad \text{track parameter corrections}$$

Since the matrix **S** is much smaller than **C** and **C**₂₂ is "*easy*" to invert, computing time is drastically reduced!

BASF module procedure:

- C Loop over all tracks
 - Select suitable subset (High momentum, many measurements)
 - C Loop over all hits per track
 - Calculate residual: track ← current hit
 - Calculate derivatives w.r.t. alignment parameters and track parameters
 - Store residual, error and derivatives for Pede (Subprogram of Millepede) in suitable format

Millepede procedure:

- Define set of inputfiles
- Constrain Global translations and rotations using Lagrange Multipliers
- Obtain List of Alignment-parameter corrections
- Possibility to check for weak-constrained modes using Eigenvalue-spectrum of the Matrix C

- Current alignment-procedure sufficient, but not optimal
- Enhancement of current Alignment using global Alignment strategy
- Basic implementation of Alignment-code almost finished
- Evaluation and fine-tuning still to be done
- First results expected for October